Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(5): 106655, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37168551

RESUMO

Cerebral hypoperfusion has been proposed as a potential cause of postictal neurological dysfunction in epilepsy, but its underlying mechanism is still unclear. We show that a 30% reduction in postictal cerebral blood flow (CBF) has two contributing factors: the early hypoperfusion up to ∼30 min post-seizure was mainly induced by arteriolar constriction, while the hypoperfusion that persisted for over an hour was due to increased capillary stalling induced by neutrophil adhesion to brain capillaries, decreased red blood cell (RBC) flow accompanied by constriction of capillaries and venules, and elevated intercellular adhesion molecule-1 (ICAM-1) expression. Administration of antibodies against the neutrophil marker Ly6G and against LFA-1, which mediates adhesive interactions with ICAM-1, prevented neutrophil adhesion and recovered the prolonged CBF reductions to control levels. Our findings provide evidence that seizure-induced neutrophil adhesion to cerebral microvessels via ICAM-1 leads to prolonged postictal hypoperfusion, which may underlie neurological dysfunction in epilepsy.

2.
Cereb Cortex ; 32(24): 5530-5543, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258078

RESUMO

Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) has been widely used as an effective treatment for refractory temporal lobe epilepsy. Despite its promising clinical outcome, the exact mechanism of how ANT-DBS alleviates seizure severity has not been fully understood, especially at the cellular level. To assess effects of DBS, the present study examined electroencephalography (EEG) signals and locomotor behavior changes and conducted immunohistochemical analyses to examine changes in neuronal activity, number of neurons, and neurogenesis of inhibitory neurons in different hippocampal subregions. ANT-DBS alleviated seizure activity, abnormal locomotor behaviors, reduced theta-band, increased gamma-band EEG power in the interictal state, and increased the number of neurons in the dentate gyrus (DG). The number of parvalbumin- and somatostatin-expressing inhibitory neurons was recovered to the level in DG and CA1 of naïve mice. Notably, BrdU-positive inhibitory neurons were increased. In conclusion, ANT-DBS not only could reduce the number of seizures, but also could induce neuronal changes in the hippocampus, which is a key region involved in chronic epileptogenesis. Importantly, our results suggest that ANT-DBS may lead to hippocampal subregion-specific cellular recovery of GABAergic inhibitory neurons.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia , Camundongos , Animais , Pilocarpina/toxicidade , Estimulação Encefálica Profunda/métodos , Núcleos Anteriores do Tálamo/fisiologia , Convulsões/induzido quimicamente , Convulsões/terapia , Hipocampo/fisiologia
3.
ACS Sens ; 6(11): 4089-4097, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34648260

RESUMO

A dual electrochemical microsensor was fabricated for concurrent monitoring of hydrogen sulfide (H2S) and calcium ions (Ca2+), which are closely linked important signaling species involved in various physiological processes. The dual sensor was prepared using a dual recessed electrode consisting of two platinum (Pt) microdisks (50 µm in diameter). Each electrode was individually optimized for the best sensing ability toward a target analyte. One electrode (WE1, amperometric H2S sensor) was modified with electrodeposition of Au and electropolymerized polyaniline coating. The other electrode (WE2, all-solid-state Ca2+-selective electrode) was composed of Ag/AgCl onto the recessed Pt disk formed via electrodeposition/chloridation, followed by silanization and Ca2+-selective membrane loading. The current of WE1 and the potential of WE2 in a dual sensor responded linearly to H2S concentration and logarithm of Ca2+ concentration, respectively, without a crosstalk between the sensing signals. Both WE1 and WE2 presented excellent sensitivity, selectivity (log⁡KH2S,iAmp≤-3.5, i = CO, NO, O2, NO2-, AP, AA, DA, and GABA; and log⁡KCa2+,jPot≤-3.2, j = Na+, K+, and Mg2+), and fast response time with reasonable stability (during ca. 6 h in vivo experiment). Particularly, WE2 prepared using a mixture of two ionophores (ETH1001 and ETH129) and two plasticizers (2-nitrophenyl octyl ether and bis(2-ethylhexyl) sebacate) showed a very shortened response time (tR to attain the ΔE/Δt slope of 0.6 mV/min = 3.0 ± 0.2 s, n ≥ 10), a critically required factor for real-time analysis. The developed sensor was utilized for simultaneous real-time monitoring of H2S and Ca2+ changes at the brain cortex surface of a living rat during spontaneous epileptic seizures induced by a cortical 4-aminopyridine injection. The dynamic changes of H2S and Ca2+ were clearly observed in an intimate correlation with the electrophysiological recording of seizures, demonstrating the sensor feasibility of in vivo and real-time simultaneous measurements of H2S and Ca2+.


Assuntos
Sulfeto de Hidrogênio , Convulsões , Animais , Encéfalo , Eletrodos , Platina , Ratos
4.
Analyst ; 144(7): 2231-2238, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30849133

RESUMO

Serum is one of the most commonly used samples in many studies to identify protein biomarkers to diagnose cancer. Although conventional enzyme-linked immunosorbent assay (ELISA) or liquid chromatography-mass spectrometry (LC-MS)-based methods have been applied as clinical tools for diagnosing cancer, there have been troublesome problems, such as inferior multiplexing capabilities, high development costs and long turnaround times, which are inappropriate for high-throughput analytical platforms. Here, we developed a simple and robust cancer diagnostic method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based total serum protein fingerprinting. First, serum samples were simply diluted with distilled water and subsequently spotted onto a MALDI plate without prior chromatographic purification or separation. The sample preparation method was enough to collect reproducible total serum protein fingerprints and would be highly advantageous for high-throughput assay. Each of the integrated main spectrum profiles (MSPs), which are representative of liver cancer patients (n = 40) or healthy controls (n = 80), was automatically generated by the MALDI Biotyper 3 software. The reliability of the integrated MSPs was successfully evaluated in comparison with a blind test set (n = 31), which consisted of 13 liver cancer patients and 18 healthy controls. Additionally, our partial least squares discriminant analysis (PLS-DA) demonstrated a statistically significant difference in MALDI-TOF MS-based total serum protein fingerprints between liver cancer patients and healthy controls. Taken together, this work suggests that this method may be an effective high-throughput platform technology for various cancer diagnoses and disease evaluations.


Assuntos
Proteínas Sanguíneas/análise , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estudos de Casos e Controles , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...